
RANDOMIZED METHODS IN COMPLEXITY

PROF. NITIN SAXENA
Department of Computer Science and Engineering

IIT Kanpur

PRE-REQUISITES : Preferable (but not necessary)- Theory of Computation, or Algorithms, or Discrete
Mathematics

INTENDED AUDIENCE : Computer Science & Engineering, Mathematics, Electronics, Physics, & similar
disciplines

INDUSTRIES APPLICABLE TO : Discrete Optimization, Cryptography, Coding theory, Computer Algebra,
Symbolic Computing Software, Cyber Security, Learning Software

COURSE OUTLINE : 
In this course we will study how randomness helps in designing algorithms and how randomness can
be removed from algorithms. We will start by formalizing computation in terms of algorithms and
circuits. We will see an example of randomized algorithms-- identity testing --and prove that eliminating
randomness would require proving hardness results. We prove hardness results for the problems of
parity and clique using randomized methods.

ABOUT INSTRUCTOR : 
He completed his Bachelors in Computer Science from the Indian Institute of Technology, Kanpur in 
2002 and completed his PhD under Manindra Agrawal in 2006. He is broadly interested in 
Computational Complexity Theory, Algebra, Geometry and Number Theory. He has been a visiting 
graduate student in Princeton University (2003-2004) and National University of Singapore (2004-2005); 
a postdoc at CWI, Amsterdam (2006-2008) and a Bonn Junior Fellow (W2 Professor) at Hausdorff 
Center for Mathematics, Bonn (2008-2013). Since April 2013, He has a faculty position in the 
department of CSE, IIT Kanpur.

COURSE PLAN : 

 Week 1: Outline. Introduction to Complexity

 Week 2: Circuits. Polynomial Identity Testing (PIT)

 Week 3: Derandomize & get a lower bound

 Week 4: Constant-depth circuits are weak

 Week 5: Monotone circuits are weak

 Week 6: Random Walk converges fast

 Week 7: Expansion properties

 Week 8: Construct Explicit Expanders

 Week 9: Pseudorandom generator (prg) & hardness

 Week 10: Error-correcting codes

 Week 11: List Decoding. Local List Decoding

 Week 12: Error-correcting codes amplify hardness




