# Particle Characterization (PG) -Video course

#### **COURSE OUTLINE**

This advanced course in "Particle Characterization" deals with methods and techniques for quantitatively and qualitatively evaluating properties of single particles and particulate assemblies. Emphasis is on the fine-particle size range, from micrometers to nanometers. Particle characteristics are linked to relevant applications in industry. Transport properties, adhesion/ cohesion phenomena and surface-particle removal mechanisms are dealt with in detail.

#### **Contents:**

- 1. **Introduction:** Need for studying particle characteristics; Typical industrial applications; emerging nano-particle technologies; microelectronics applications.
- 2. **Single Particle:** Concept & Definition; Particle Surface; Surface-Fluid Interactions; Sub-Surface Region; Internal Grain Boundaries; Interior of Particle; Size; Shape.
- 3. **Particulate Assemblies:** Description & Properties; Statistical Concepts; Mean Diameters & Shape Factors; Distribution Functions & Models; Surface Area & Specific Surface Calculations.
- 4. Fine Particle Characterization: Size Analysis & Sampling; Shape Determination Methods; Pattern Recognition & Feature Extraction; Particle Signature & Meloy Equations; Property Representation.
- 5. **Physico-Chemical Properties:** Visual Appearance; Absorption; Electrical Properties; Transport Properties; Adhesion & Deposition; Removal from Surfaces; Magnetism; Thermal Conductivity; Aggregation, Coagulation & Restructuring; Chemical Properties.
- Applications: Dust Explosions; Dust Flame Propagation; Health Hazards; Deserts & Sand Movement; Hazard Potential of Heat-Transfer Fluids; Atmospheric Aerosols; Nano-technology.

COURSE DETAIL



#### **Pre-requisites:**

UG courses in

- Mechanical Operations
- Fluid Mechanics
- Heat Transfer
- Mass Transfer

### **Additional Reading:**

- "Particle Characterization: Light Scattering Methods", Renliang Xu, Kluwer Academic Publishers (The Netherlands), 2001.
- 2. "Introduction to Particle Technology", Edited by **Martin Rhodes**, 2nd Edition, Wiley, 2008.

**Coordinators:** 

| SI.<br>No. | Торіс                                                                                                                                                                                                                                                                                    | No. of<br>Hours | Department of Chemical<br>EngineeringIIT Madras |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------|
| 1          | <b>Introduction:</b> Need for studying particle<br>characteristics; Typical industrial<br>applications; emerging nano-particle<br>technologies; microelectronics applications.                                                                                                           | 2               |                                                 |
| 2          | <b>Single Particle:</b> Concept & Definition;<br>Particle Surface; Surface-Fluid Interactions;<br>Sub-Surface Region; Internal Grain<br>Boundaries; Interior of Particle; Size; Shape.                                                                                                   | 6               |                                                 |
| 3          | <b>Particulate Assemblies:</b> Description &<br>Properties; Statistical Concepts; Mean<br>Diameters & Shape Factors; Distribution<br>Functions & Models; Surface Area &<br>Specific Surface Calculations.                                                                                | 6               |                                                 |
| 4          | <b>Fine Particle Characterization:</b> Size<br>Analysis & Sampling; Shape Determination<br>Methods; Pattern Recognition & Feature<br>Extraction; Particle Signature & Meloy<br>Equations; Property Representation.                                                                       | 8               |                                                 |
| 5          | <b>Physico-Chemical Properties:</b> Visual<br>Appearance; Absorption; Electrical<br>Properties; Transport Properties; Adhesion<br>& Deposition; Removal from Surfaces;<br>M a g n e t i s m ; Thermal Conductivity;<br>Aggregation, Coagulation & Restructuring;<br>Chemical Properties. | 10              |                                                 |
| 6          | <b>Applications:</b> Dust Explosions; Dust<br>Flame Propagation; Health Hazards;<br>Deserts & Sand Movement; Hazard<br>Potential of Heat-Transfer Fluids;<br>Atmospheric Aerosols; Nano-technology.                                                                                      | 8               |                                                 |
|            | Total                                                                                                                                                                                                                                                                                    | 40              |                                                 |
| Refere     |                                                                                                                                                                                                                                                                                          | 40              |                                                 |

## **References:**

• Particulate Science & Technology, J.K. Beddow, Chemical Publishing Co., New York, NY, 1980.